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1 Objectives 

In current technologies, given the high rehability required in almost all systems, the 

ability to detect a system fault at the earliest possible stage is of primary interest. The 

routine manual inspections required for structures in mechanical, civil and aerospace fields, 

significantly increase maintenance cost. Our objective is to develop and implement a self- 

diagnostic tool that would reduce costs while also increasing system efiiciency and reducing 

risk. In addition, diagnostic tools can provide information on inaccessible parts in the 

structure. To provide the necessary architecture for this health maintenance, an array of 

sensor is used to monitor the system. 

2 Status of Effort 

During this grant, a fault detection filter was developed for structural health monitoring 

of a simply supported beam. More complex structtrres would be addressed later. The filter 

design is based on a mathematical model of the structure and rehes on foiu: measurements 

and one actuation point. Based on structural analysis, the structural damage is decomposed 
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and reduced to a fault direction vector that maintains a fixed direction in the detection 

space. We show that this fault detection vector can be detected and uniquely identified and 

thereby, the structural damage is detected and localized. 

3    Accomplishments/New Findings 

During this grant, robust fault detection filter based on a spectral design method is 

implemented for a simply supported beam and is shown to both identify and localize struc- 

tural faults. See Appendix A for details. The algorithm is specifically accomplished using 4 

sensors and 1 actuator and relays on a mathematical model of the structure. The detection 

filter design is based on fault direction vectors that can be uniquely associated with any 

structural fault occurring at the beam. At each damage locations the detection filter mea- 

surement residual vector produces a fibced direction independent of the fault (damage) size 

that can be uniquely identified. The numerical simulations are compared with experimental 

results produced by an aluminum simply supported beam and show good agreement. The 

measvirements and actuation of the beam are obtained with piezoelectric transducers that 

ensure a large operating bandwidth. Although the algorithm is designed specifically for 4 

measurements, it can be adapted to virtually any number of sensors. This is a fundamen- 

tal properties for structural health monitoring because, depending on structure complexity, 

the damage detection must be accomplished using the least number of sensors. The fault- 

detection filter methodology can also include sensors and actuator faults, as well as plant 

faults as addressed here. However, in this grant period, only structural faults are considered. 

For the implementation of the fault detection filter, the following equipments where uti- 

lized: 1) A Wavetek lOMHz DDs Mod. 29 function generator to produce the sinusoidal 

inputs for the actuator, 2) a low impedance Burleigh PZ 150M volt amplifier for the ampU- 

fication of the actuator input, and 3) a National Instruments PCI-MI0-16E-1 PC card for 

data acquisition. The data from the sensors and actuator were sampled at 40 Ksample/sec 

and each acquisition lasted asted 10 seconds. In order to reduce the noise effect, digital 

Chebychev low pass and band-pass filter where appropriately designed for each of the input 



and output signals. The state integration was obtained with a Runge-Kutta fourth or- 

der method using Matlab software. The actuator input was approximately 120 Volts after 

amplification and the average output from the sensors was approximately 2 Volts^ The 

norms of the projected residuals obtained from the undamaged structure had magnitude of 

approximately 10"^, indicating good tracking of the filter. 
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Figure 1: Measured data. Filter N° 1 and Filter N° 4. Normalized norms of the projected 

residuals: A) Before damage and B) after damage 

'The average measured capacitance of each sensor is C = 3nF resulting in high impedance and thereby 

high voltage output even with small currents generally experienced with piezoelectric trauisducers. 



The damage inflicted upon the structure was a saw cut of approximately 5mm x 1 mm 

made on one side of the beam at approximately 448 mm from the beam left-hand edge. The 

saw cut position was chosen coincident with the pre-defined fault location N° 9. A new set 

of data was taken from the damaged structure and compared with the estimate of the fault 

detection filter. The resulting norms of the projected residuals are shown in figure (1) for 

filter N° 1 and filter N° 4, respectively. Recall that, for this scenario, filter N° 1 is the 

filter that supposedly should detect the damage. In the figure, for each filter, in case A) are 

shown the normalized norms of residuals before damage occurs and in case B) are shown 

the normahzed norms of residuals after damage has occurred. The residuals are normalized 

with respect to values obtained before damage had occurred. As it can be seen from figure 

(1), in both filters, when there was no damage, all the three residuals have similar values. 

After damage occurred, in filter AT" 1, the norm of the pre-defined fault direction, location 

9, increased approximately 3 times while the other two norms, location 13 and 15, were 

essentially unchanged. This indicated that the projector 9 detected a damage coincident 

with the fault location 9. For filter N° 4, instead, all the residual norms increased indicating 

that no specific fault was detected. Although not shown, the residual norms of filter N° 

2, 3 and 5, after damage had occurred, showed a behavior similar to the one of filter N° 4 

indicating that no specific fault was detected. 
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Abstract 

In this paper, a fault detection filter is developed for structural health monitoring 

of a simply supported beam. The filter design is based on a mathematical model of the 

structure and relies on four measurements and one actuation point. Based on structural 

analysis , the structural damage is decomposed and reduced to a fault direction vector 

that maintains a ffaced direction in the detection space. According to detection filter the- 

ory, this fault detection vector can be detected and uniquely identified and thereby, the 

structural damage is detected and localized. The design algorithm uses an eigenstruc- 

ture assignment approach which allows accommodation of ill-conditioned eigenvectors 

in the construction of the gains. For this particular design, 15 pre-defined fault po- 

sitions are simulated so that the corresponding fault direction vectors are utiUzed as 

basis to identify any of the infinite possible damage locations. The design required 5 

fault detection filters each of one usmg 3 of the 15 pre-defined fault locations. The 

filter is applied to the data obtained from experimental results of an aluminum simply 

supported beam with 4 piezoelectric sensors and 1 piezoelectric actuator. In particulM, 

by exciting the structure at the first natural frequency, a 3.5 mm saw cut made to one 

side of the aluminum beam, is detected and localized. 



1    Introduction 

In current technologies, given the high rehability required in almost all systems, the abil- 

ity to detect a system fault at the earliest possible stage is of primary interest. The routine 

manual inspections required for structures in mechanical, civil and aerospace fields, signif- 

icantly increase maintenance cost. Implementing a self-diagnostic tool would reduce costs 

while also increasing system efficiency and reducing risk. In addition, diagnostic tools can 

provide information on inaccessible parts in the structure. Damage detection is therefore, 

an important asset. A system that continuously monitors a structure in order to detect 

damage, is often referred to as a health monitoring system. While the potential payoflFs 

are high, developing a reliable technique to monitor damage evolution in a structure is a 

difficult task to achieve. In past decades, many different approaches have been proposed 

and among them, the updated modal parameter methods are the most prominent. The idea 

of utilizing updated modal parameters for health monitoring approaches is as follow. Sup- 

pose that the finite element model (FEM) of the structure has been refined and validated 

by test data prior to damage. Next, assume at some later date, structural damage has 

occurred and a new set of data has been taken. Then, the discrepancies between the new 

set of acquired data and the previous refined FEM model, generally resulting in a matrbc 

of sparse data, can be used to locate the damage. The baseline of these techniques utiHze 

iterative algorithms to identify differences either in the stifi&iess matrix or in the flexibility 

matrix prior to and following damage. A review of these health monitoring methods can 

be found in reference [1] while some interesting results along with some generic issues and 

limitations are found in reference [2]. The lipiiting issues of all these techniques are related 

to the iterative algorithm and its numerical error that can overtake the small differences 

obtained between the update matrices and the baseline and thereby lowering the method 

sensitivity to damage. In addition, a possible sensor or actuator fault cannot be included 

in the Emalysis and could rase misleading conclusions. 

An alternative approach can be obtained by losing the fault detection filter theory that 

creates an estimated output based on a baseline structural model. The filter residual, com- 



posed of the difference between the estimated output and the measured one, is constructed 

to have an invariant direction in the presence of an element from a set of a priori faults 

which allows both detection and identification. The fault detection filter was first intro- 

duced by [3] and refined by [4] and is also known as Beard-Jones detection filter. A spectral 

analysis of the Beard-Jones detection filter and an improved design algorithm have been 

developed in [6]. Furthermore, an important geometric interpretation of the Beard-Jones 

detection filter has been developed in [5]. Based on this geometric interpretation, a new 

fault detection filter, called restricted diagonal detection filter, has been generalized from the 

Beard-Jones detection filter [5]. Finally, design algorithms have been developed to improve 

the robustness of both fault detection filters [7,8]. In particular, the spectral method of [7] is 

applied here. The filter effectiveness has been proved in a number of practical applications 

such as sensor and actuator faults in automotive systems, references [9] and [10], and for 

GPS/INS navigation system, reference [11]. However, very few appUcations of st^uctvural 

health monitoring can be found in literature. Probably, the first example was presented 

by Mehra and Peshon (1970), [12], that proposed a Kalman filter to estimate the changes 

in the time domain of a faulty system. Among other possible applications, fault detection 

for an aircraft jet engine is included, even though no specific algorithm was provided. A 

more recent example is found in Waller and Schmidt (1999), [13], where system identifi- 

cation through an extended Kalman filter is used. The idea is to update the filter and 

identify the changes in the system parameters. By using an analytical model and tracking 

the updated parameters, the fault can be localized. The proposed approach rehes on single 

frequency shifts that are generally very small and therefore highly affected by instrumen- 

tation error. Another approach is proposed by Pritzen and Mengelkamp (2002), [14], that 

utiUzed a vibration based, time-domain method with a Kalman filter that detects fault by 

the increase of covariances from the residuals. From the statistical evaluation, one can then 

setup a threshold to judge the degree of significance in the observed changes and determine 

whether the changes are indeed resulted from damage in the system or disturbances due to 

noise. The approach is implemented for a composite panel with stringers and it is shown 

effective in detecting damage even though the method is incapable of damage localization. 



In this paper, the fault detection filter [7] is implemented for a simply supported beam 

and is shown to both identify and localize structural faults. Thfe algorithm is specifically 

accomplished using 4 sensors and 1 actuator and relays on a mathematical model of the 

structure. The detection filter design is based on fault direction vectors that can be uniquely 

associated with any structural fault occurring at the beam. At each damage locations the 

detection filter measurement residual vector produces a fixed direction independent of the 

fault (damage) size that can be uniquely identified. The numerical simulations are compared 

with experimental results produced by an aluminum simply supported beam and show good 

agreement. The measurements and actuation of the beam are obtained with piezoelectric 

transducers that ensure a large operating bandwidth. Although the algorithm is designed 

specifically for 4 measurements, it can be adapted to virtually any number of sensors. This is 

a fundamental properties for structural health monitoring because, depending on structure 

complexity, the damage detection must be accomplished using the least number of sensors. 

The fault-detection filter methodology can also include sensors and actuator faults, as well 

as plant faults as addressed here. However, in the present paper, only structural faults are 

considered. 

2    Fault Detection Filter. General Theory 

Consider a Unear time invariant system 

X = Ax + Bu 
(1) 

y = Cx 

where A, B and C are matrices, u is the input and y is the measurement. Suppose that q 

failure modes, associated with actuator, plant, and sensor faults, occur in the system. Then, 

for the purposes of fault-detection filter design [15] the system equations in the presence of 

a fault have the uniform structure 

X = Ax + Bu -1- V] Fi^Li 
i=i (2) 

y = Cx 



where Fj are assumed known fault direction vectors related to each fault and ^li (failure 

magnitudes) are unknown arbitrary time functions. We assume that Fi are monic, so that 

m^Q implies that Fi m 7^ 0. Equation (2) represents the physical way plant and actuator 

faults enter a system. To include sensor faults in this form requires a transformation [15]. 

The detection filter is a Hnear observer 

i =r Ai + Bu + L(2/ - Cx) (3) 

where the gain L is to be chosen so that the residual associated with a particular fault has 

a unique directional behavior. Define a residual, r, between the true measurement, j/, and 

the estimate measurement x such that 

r = {y-Cx) (4) 

Subsequently, by defining the error between true state, (x), and estimated state, (x), e = 

{x - x), from equations (2), (3) and (4), the error system dynamic equation is obtained as 

e = (A - LC) e +^Fi^li 
i=i (5) 

r=:Ce 

If the observer gains L are chosen such that (A-LC) is stable and if (C, A) is observable, 

then after a transient response and in absence of disturbances, the steady state residual r 

is nonzero only if ^ are different from zero. Therefore, £iny stable observer can detect the 

fault by monitoring the residual. A more difficult task is to determine which of the q faults 

has occurred. The fault detection filter is capable of distinguishing among them. The idea 

is to define the filter gains L such that the error e remains in an invariant subspace when 

the fault occurs. This invariant subspace is called a detection space. These subspaces must 

not overlap each other in order to guarantee the identification of the fault. The invariance 

of the subspaces with the condition given as follows, implies that the residual r has fixed 

directions. In order to isolate the faults, projectors Hi are designed such that the projected 

residual {Ri = Htr) is sensitive only to the i-th fault. There are several algorithms developed 



for determining the filter gains. In our analysis, the algorithm adopted is from Douglas and 

Speyer, reference [7]. 

Some requirements for the fault decomposition, equation (5) must be accomplished in 

order to uniquely identify the fault and are: 

1. The fault vectors Fi must be output separable, i.e. [CFi,..., CFg] has full rank q. 

2. The fault vectors Fi must be mutually detectable (see reference [7]). 

3. (C, A,Fi ) do not have invariant zeros at origin. 

The first requirement guarantees that each fault can be isolated from other faults. When 

a fault fii occurs, the error e remains in a fixed subspace and the residual remains in an 

associated output subspace. If all the output subspaces are independent, the fault can be 

identified by projecting the residual. The second requirement, ensures that the filter eigen- 

values can be assigned arbitrarily. To arbitrarily assign all eigenvalues of ^ - LC requires 

that the sum of the ranks of all the detection spaces be equal to the rank of the detection 

space constructed from all the faults combined together. The third requirement guarantees 

that the projected residuals are non zero in steady state as long as their associated faults 

exists. AU the mathematical issues and details relate to the design as well as the filter 

limitations, are extensively described in reference [7]. 
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Figure 1: Scheme of the simply supported beam.  Included are the damaged region, one 

piezoelectric sensor and one piezoelectric actuator 



3    Simply supported beam 

The structure is an aluminum simply supported beam of rectangular cross section with 

a piezoelectric actuator placed on the bottom of the beam surface and piezoelectric sensors 

placed on the beam top surface, as shown in figure (1). The reference frame is taken from 

the center of the cross section such that the x-axis coincides with the beam neutral axis. 

The analysis is hmited to the bending behavior of the structure and small deformations are 

assumed. The Euler-Bernouilli hypothesis are assumed of plane sections that rotate because 

of bending and remain plane after deformation [16]. The beam's potential (Pg) and kinetic 

energy (TB) is expressed in terms of vertical displacements, w{x, t), [16] 

-4x.M-sr--=^x.-{(^r-'(^)> (6) 

where EB and pB are the structure Young's Modulus and mass density, respectively and 

the integrals are extended to the beam volume VB- Equation (6) is valid only for an un- 

damaged structure. However, when damage is present, different expressions are necessary. 

In order to represent a crack-type damage, a region of the structure is modelled such that 

the crack-type damage has different stiffness (Young's Modulus) when compared with the 

undamaged structure (see figure 1). The mass density of damaged region is assumed un- 

changed because of the negligible mass reduction due to a crack. The displacements across 

the undamaged-damaged-undamaged interfaces are assumed continuous. With these as- 

sumptions, the kinetic energy, TB, remains imchanged while the volume integral of the 

potential energy must be partitioned because the Young's Modulus is not constant along 

the structure length. By defining VBD and EVB the volume and Young's Modulus of the 

damaged region, respectively, the potential energy for the damaged structure can be written 

as: 

For the piezoelectric actuator, the potential energy must account for the electro-mechanical 

coupling and this can be done by introducing the electrical enthalpy, [17] i 



where VA is the actuator volume, E^ is the actuator Young's Modulus obtained at constant 

electric field, dsi is the piezoelectric stress/charge coefficient, E is the applied electric field 

and e^ is the transducer permittivity assumed constant. Equation (8) is obtained in the 

hypothesis of piezoelectric transducer polarized in the thickness direction and considering 

its longitudinal deformations as the only relevant for the case. Note that, the first term of 

equation (8), represents the potential energy due to the strain energy while the remaining 

two terms are the contribution of the electric field. 

Equation (8) could be utilized for the sensor as well. However, for the sensor, given 

the small electric field experienced, the strain energy contribution to the overall energy is 

predominant and the electrical terms can be neglected. Thus, the potential energy for the 

sensor can be written as 

where Vs is the sensor volume and Es is the sensor Young's Modulus. 

The kinetic energy for the actuator, TA and sensor, Ts, are: [16] 

. ^s^uAm'^<my 
where pA and ps are the actuator and sensor mass density, respectively. 

The equation of motion are obtained by applying the Rayleigh-Ritz method, [16], that 

approximates the unknown displacements w{x,t) with a series of shape functions referred 

to as admissible functions. These fimctions are required to satisfy the natiural boundary 

condition that for the simply supported beam are w{0, t) = w{L, t) = 0. For this case sinu- 

soidal functions are eligible as shape functions and the displacement w{x, t) are expressed 

as 

ti;(x, t) = ;^ Bj{t) sin(^) = "£ ^iW ^^'^(^i^) (^^^ 

Note that these admissible functions coincide with the mode shapes of the structure and 

therefore provide us with some physical information of the dynamic behavior of the beam. 

Upon substitution of equation (11) into equations (7)- (10), the potential and kinetic energy 



are expressed in terms of the series expansion coefficients Bj{t). The system Lagrangian, 

L{Bj{t), Bj{t), t) = Trot - PTOU is thereby obtained by collecting the energy expressions of 

the sensor, actuator and beam. By means of Lagrange 's Equations, the Lagrangian provides 

the equation of motion 

[M]{Xit)} + [K]{X{t)} = {Q} (12) 

where {X{t)} = {Bu B2, ■■, Bq}"^ is the generalized vector, [M] and [K] are the gener- 

alized mass and stiffness matrices, respectively and {Q} is the generalized forcing terms. 

In the equation of motion, damping is included by means of modal coefficients, ^j, whose 

values are evaluated based on the experimental measurements, [18] 

[D] = [M] $ A $^ [M],    A = 2 ^j u>j (13) 

In equation (13), Uj are the system natural frequencies and the matrix $ is obtained with 

the system eigenvectors ordered column-wise # = [0i, 4'2, • • • > <t>n]- By means of equation 

(13), the equation of motion can be written in its final form 

[M]{Xit)} + [D]{Xit)} + [K] {Xm = {Q} (14) 

3.1    State-variable description 

The equation of motion (14), is rearranged in a linear time invariant state spa<;e form 

(15) 
xit) = c*at) 

where the state vector is defined by means of the generalized displacement vector C(*) = 

{X(t) , X(t)}^, A<j)A is the voltage input appUed to the actuator and A, B and C* are 



defined as follows^ 

A = 

B = < 

0 I 
,    C* = [I , 0] 

(16) 

Q*A^A = Q 

The output from equation (15) is the generalized displacement vector, whose components 

are the coefficients of the series expansion, equation (11). 

For the current analysis, the output voltage from each sensor is required which is propor- 

tional to the strains experienced by the piezoelectric. Because this voltage is generally very 

small, the hypothesis of zero flux, [17], can be issued such that, neglecting the transversal 

deformation, gives 

Ei{x,z,t) = -dsi-^  \^-z-^j^^^ (17) 

In equation (17), in addition to the quantities defined in equation (8), the parameter c^^ 

is utilized which represent the clamped piezoelectric permittivity [17]. The voltage output 

is obtained as the averaged value along the sensor electrodes of the integral of the electric 

field over its thickness, i.e. 

XlSi   JtB/2 
A<l>s 

rX2Si   rtaf^+tsi / 
H = a / { 

Jxisi   Jta/'i \ 

a = - dai 

-z^j dz dx 

bsi 
(18) 

€^^ \x2Si - XlSil 

where bsi is the sensor width, tsi is the sensor thickness and xisi, anda;25i, are the starting 

and ending abscissaes of the sensor. This integration processes can be included in the state 

variable form by defining a new matrix C as follows 

[C] = 

Pi 

Pi 

[C*] A(t>s= < 

A4>si{t) 

A(j>S2{t) 

A^5n(i) 

= [c]m (19) 

^In order to reduce the symbology, the following notation is adopted: [M] = M, [K] = K and [Q] = Q. 
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where A(f>si are the voltage outputs of each sensor and the vectors Pi are obtained after 

integration of equation (18). The final form of the state variable description can be written 

as 

(20) 
C(t) = AC(t) + BA<^^ 

A<^s = CC(t) 

For the simply supported beam described in this paper, the number of mode-shapes em- 

ployed in equation (11) is 14 and therefore stiffness, mass and damping matrices have 

dimensions: diTn{M) = dim{K) = dim{D) = 14 x 14, respectively, while the matrix A 

has dimension dim(A = 28 x 28). One actuator and four sensors where utiUzed so that 

the resulting B and C matrices have dimensions dim(B) = 28 x 1 and dim{C) = 4 x 28, 

respectively. 

3.2    Fault decomposition 

In order to utilize the fault detection filter, the structural damage needs to be reduced 

to the form in equation (2), which implies the generation of the fault direction vectors, Fi 

and the failure ampUtudes, m. This can be achieved as follows. By assuming that a fault 

occurs in the beam, and no faults occurs in the sensor and actuator arrays, the A matrix 

(equation (16)), changes as follows 

A = (A + 5A) = 
0 / + 

0 0 

M-^5K   0 
(21) 

where 5K is the variation of the stiffness matrix. Recall that it is assumed that the damage 

effects only the stiffness of the structure while its mass remains unmodified. 

The matrix 6A can be decomposed by means of a singular value decomposition. Note 

that, fi:om equation (21), the rank of the matrix 5A is essentially related to the rank of the 

matrix SK and therefore, the singular value decomposition of SK is 

6K = U'nV (22) 

11 



By defining the fault direction matrix, F, and failure amplitude, y., as follow 

F=\     ^     \,    M=(o   Y.V\C (23) 

with E and Q, the state vector, being unknown, the state variable description of the damaged 

structure can be written as: 

CW = AC(t)+BA<^A + F/i . 

A<t>s = Cat) 

This procedure can be repeated for each fault location. For the structure in consideration, 

recalling that a total of 14 mode shapes or shape functions were utilized, the resulting state 

dimension was M^*. The matrix 5K was obtained for numerous fault locations and for 

different damage sizes. However, it was noticed that, when the fault size was sufficiently 

small, the rank of the 6K matrix was constant (rank{SK) = 1) for all the different positions 

simulated. Therefore, 1 fault direction vector, Fj, (dim(F) = 28 x 1) and 1 failure ampUtude, 

fXi, {dim{n) = 1 X 1) is associated with each of the infinite fault positions. This can be 

seen in figure (2) where the first two singular values of the SK matrix obtained at a fixed 

damage position and for different damage sizes are shown. The damage sizes are expressed 

as percentage of the beam length. It can be seen from figure (2) that, while the magnitude 

of one singular value is approximately constant, the magnitude of other drops sharply with 

the decrease of fault size. Therefore, because we were interested in detecting damage at the 

earliest stage possible, that is for a fault magnitude as small as possible, only the vector 

associated with the greatest singular value was kept as fault direction vector for our analysis. 

In addition to the rank of the 5K matrix, the variation in directions of the fault vectors 

was investigated as function of the damage size. A baseline fault direction vector was 

obtained by simulating a damage in a generic position whose size was 1% of the beam 

length. Then, the damage size was varied and the new resulting fault detection vector was 

compared with the baseline. The comparison was obtained by means of the inner product 

between the two vectors and the results are shown in figure (3). Prom the figure, it can be 

seen that, up to approximately 4% size, the inner product is close to unity, meaning that 
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Figure 2: Singular values relative to the 4 vectors obtained from the decomposition of the 

simply supported beam, obtained for different fault sizes. 

the directions of these vectors do not change significantly. 

Based on these two investigations, we concluded that any sufficiently small damage 

sizes produces only one significant fault direction vector, whose amplitude and direction is 

approximately independent of fault size, and only dependent on fault location. Therefore, 

for each of the infinite damage locations, one can associate one fault vector and a fault 

detection filter can be used to detect and locate each of them. More detail of this fault 

decomposition can be found in reference [19]. 

4    Filter Design 

The filter design is implemented by defining pre-simulated fault locations forming a basis 

for the identification of each of the infinite possible faults that might occvu:. The algorithm 

is obtained from reference [7] and adapted to the beam structure. For this case, based on 

the Douglas-Speyer theory to build only one detection filter requires that as many measure- 

ments as half of the dimension of the state vector be available. For example, because R^*, 

the number of measurements required would be n=14- However, requiring this many sen- 

sors can be a limiting issue for practical implementations and a modification' of the original 

algorithm is presented here. The algorithm is implemented by designing five filters, each 
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Figure 3: Inner product of fault vectors when the fault size is varied maintaining fixed the 

fault position. 

PRE-oenNED FAULT LOCATIONS 

FILTER 1 FILTER! 
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• STRucTORftu FAULT TO BE IDENTIFIED 

Figure 4: Scheme of the simply supported beam with 4 measurements and 15 simulated 

faults used in the design of 5 fault detection filters. 

of them utilizing three pre-defined fault direction vectors positioned evenly in the interval 

between two sensors. A scheme of the measurements and the pre-defined fault locations 

is shown in figure (4). Although the algorithm is presented for this specific case of four 

sensors, s = 4, it can be adapted for virtually any number sensors providing s > 2. 

The pre-defined fault direction vectors satisfies the three requirements listed in section(2), 

i.e. are mutually detectable, output separable, and (C,A, Fi) do not have invariant zeros 

at origin. For each filter design one wants to choose the filter gains, L, such that, if a fault 

occurs, the residual remains in an invariant subspace n (detection space). To ensure this, 

the filter eigenvalues are assigned such that they have equal values. In order to uniquely 

identify each fault, these subspaces need to be non intersecting with each other, and their 

dimension must entirely fill the system space. The detection spaces associated with each 
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fault, n, have dimension dirp,{Ti) = 2. Therefore, the three detection spaces do not fill the 

dimension of the state space. For example, for filter one, the detection spaces associated 

with the faults Fi, F2 and F3 (see figure (4)), are n, T2 T3, and 

ri U r2 U T3 = W (25) 

and the resulting complementary subspace has dimension R^^. The detection space is 

obtained by assigning 2 equal eigenvalues for all the 3 fault direction filters. The comple- 

mentary space is instead obtained by assigning additional 22 eigenvalues. In this design 

procedure, the sets of eigenvalues chosen were complex conjugated and equal for each filter, 

although this is not a requirement, it allows fault directions at arbitrary damage locations 

to appear in invariant directions in residual space. The procedure for estabhshing the de- 

tection spaces and the complementary space follows next and is described separately. 

4.1    Detection space 

As previously mentioned, 5 filters are designed for the simply supported beam scenario 

and each filter relays on 3 pre-defined fault locations. We use 3 pre-defined fault locations 

rather than 4, because with 4 the system is not mutually detectable and therefore, all the 

filter eigenvalues can not be chosen arbitrarily. The procedure here described is the same 

for each filter. Prom reference [7], the filter gains, L, can be obtained by left-eigenvector 

assignment as follows: 

Xil - A? 
^T 

< 
0 

0 w 0 
,  ;>=1,2,3 (26) 

where the matrix Fp is obtained collecting column-wise all the fault direction vectors except 

the p-th. As previously mentioned, the two eigenvalues used in this algorithm are of complex 

conjugate, i.e. Xi —^ X and A*. By means of equation 16, the above equation (26) can be 
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rewritten in its partitioned form, 

\il        -{Aaf        C^ Vi 0 

-I   XiI + {Abf    0 •   V2 . = . 0 

0          {F^)p         0 w 0 
(27) 

where the matrices ff ^ andCo^ are obtained from equation (19) and (22), respectively. 

The dimensions of the left matrix of equation (26) are 30 x 32 and its range space has di- 

mension 30. Although its resulting null space is two-dimensional, in the algorithm presented 

here, only one of the two null vectors is employed. Prom the third row of equation (27), 

because dim{{F^)p) = 2 x 14 and its rank is rank{{Fl)p) = 2, we obtain 12 independent 

vectors V2 that span its null space 

{F^)pV2 = 0 -^  iV2k)i,    k = l,2,...,l2. (28) 

By substituting these twelve vectors into the second row of equation (27), a total of 12 

(complex) vectors Vi are obtained 

where: 
(29) 

{Vii)\, = {biI + Ab)iV2k%- 

By substituting a linear combination of the twelve vectors, Vi and V2, in the first row of 

equation (26) 

XiVi + AaV2 + C^W = 0 (30) 

^Prom equation (22), the generic fault direction vector, is defined as F< = |o , (M ^t/c)^|    and can be 

rewritten as Fi = {O , F^}'^,    dim(Fi,) = 14 x 1 
^From equation (19), the matrix C can be rewritten as 

[C] = [I , 0] = [Co 0] 

and dim(Co) = 14 x 14 
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and by defining a\, the generic coefficients of their linear combination, after rearranging 

the terms, one obtains 

[(Mi)j,... (Mi2)^, (Co^)i, {Cl)2]< 

a\ 

a\ 

"12 

w2 

[{Cl)z, (Co^)4] ^ 
104 

(31) 

In the above equation, iwi, W2, w^ and 104 are the unknown components of the vector W, 

(Co')s, s = 1,2,3,4 are the column components of the matrix C^ and the complex vectors 

{Mk)\, are 

{M,% = {{M^)i,+j{Mi%] = {<V&% - bi{Vl,% ^^^^ 

Since the vectors (Mfc)^ and (C^)^ have dimensions dim((Mfe)j,) = dim{{Cl)s) = 14 x 

1, equation (31) yields 14 algebraic equations with 16 unknown coefficients: a*, k = 

1,2 ... 12, and wi, W2, W3, W4, respectively. Because the vectors (Mfc)p and {C^)s 

are found to be Unearly independent and the matrix on the left side of equation (31) has 

full rank, a solution is obtained by assigning arbitrarily, two values, say W3 and 104. After 

recovering the coefficients aj. from equation (31), they are substitute back to equation (29) 

to obtain the two unknown vectors (Vi)*, and {V-iYp for each p-th fault and for each i-th 

eigenvalue. 

12 

V? 

{V2)i, = ^aUV2k)i, 
fc=i 
12 12 

iVi)p = E "fc("'-^ + Ab)iV2k% + 3 E ""kibil + Ab){V2k)i, 

(33) 

fc=i fc=i 

The vectors Vi, V2, and (W^)j, = [wi, W2, ^3, ^4]^, composed together, constitute the 

null-space vectors solution of equation (26). The procedure is repeated for each of the p 

fault vectors, p = 1,2,3, and for each of the two eigenvalues Ai and AJ chosen for the 
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detection spaces so that six independent vectors are obtained ^ 

VD 

WD = 

{Vi)\   (Vi*)} 

{V2)\    (V?)} 

{W)\   {W*)\ 

{Vi)l   {V,*)\ 

{V2)\    {Vi)\ 

{W)l   {W% 

(34) 

4.2    Complementary space 

The procedure to obtain the null space of the complementary spaces is similar to the 

one described for the detection space. As usual, the detection space basis is obtained by 

left-eigenvector assignment of (26) or its partitioned form 

hi -{Aaf Cf^ 

-I   Xil + iAb)^    0 

0 (n^) 0 

( 
0 

\V2 

w 
V 

► = i 0 

0 

i = l,2,. ,11 
(35) 

All the matrices of equation are unchanged except the matrix (F^) of the 3'"'' row that now 

includes all the filter fault directions. For example, for filter 1, F^ is 

if = [Fi, F2, F3] = . dimiF^ ) = 3 X 14 (36) 

As consequence, the dimension of the left matrix of equation (35) is now 31 x 32 and, because 

its range space has dimension equal to 31, the resulting null space is one-dimensional yielding 

a unique null vector. As usual, in order to obtain this null vector, it is convenient to solve 

piecewise the equation (35). Prom the third row of equation (35), the matrix F^ has 

dim{F^) = 3 X 14 and rank{Ff) = 3 yielding 11 vectors, V2 for each eigenvalues Aj 

(if )V2 = 0 (W = ^2fc, fc = l,2 ... ,11. (37) 

^The asterisk indicates the complex conjugate vectors. 
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By substituting the obtained vectors (V2*;)* in the second row of equation (35), analogously 

as for the previous case, 11 vectors (Vi)' are found. 

The first row of equation (35) provides the vector W after substituting a linear combina- 

tion of the vectors (Vifc)' and {V2kY- Similarly as for the procedure adopted in the detection 

filter, by defining a^, the generic coeflScients of the hnear combination, and by naming as 

wi, W2, W3 and W4, the unknown components of the vector W, the first row of equation 

(35), after rearranging the terms, becomes 

[(Ml)^. 

a 

"I 

(Mu)', (Cj)i. (Cj)2, (Cj)3] { ail > 

Wl 

w2 

W3 

- [iC^U] WA (38) 

where (CQ')*, S = 1,2,3,4 are the column component of the matrix CQ and the complex 

vectors {Mkf are obtained in a similar way as for equation (32). Notice that equation (38) 

is a set of 14 algebraic equations with 15 unknowns: a^, fc = 1,2, ... 11, and w\, W2, W3 

and 104. On the other hand, the vectors {Mkf and (Cj)s, for this case are verified to be 

hnearly independent and thus the left side matrix of equation (38) is invertible. A solution 

is therefore possible by assigning the value of one component, say W4. Thus, equation (38) 

provides the coefficients a^ of the hnear combination of vectors (VikY and {VikY a^d the 

two vectors (Vi)* and (1^2)' are recovered as 

12 12 

iV2Y = E "i^2fc,      (Vl)' = J2 4^2* (39) 
fc=l fe=l 

The procedure is repeated for each of the eigenvalues Aj and A* chosen for the comple- 

mentary spaces, to obtain a total of 22 independent vectors. These vectors are ordered into 
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(40) 

the following two matrices, 

[(Vi)i {V{)' ... {ViY' W)" 
Vc = 

[m'   {V2*)'   ...   (V2)"   (V2*)" 

Wc= (W)^  iw*Y  ...  W"  (w^*P 

Once the vector sets, Vi, V2 and W are obtained for both the detection spaces and 

complementary space, the matrices defined in equations (34) and (40) are rearranged as 

follows: 

V=lVo.Vcl ^^^j 

W = [WD, WC] 

and the final filter gains are obtained as 

L^ = W(V)-i    orL = (V^)-^W^ (42) 

4.3    Numerical simulation and optimal design 

In order to illustrate the use of the fault detection filter here proposed for health mon- 

itoring, we refer to the scheme of figure (4). As already stated, the figure shows the beam 

structure with 15 pre-defined fault locations utilized for the design of 5 distinct fault de- 

tection filters. For this simulation, a structural fault is also included and its position is 

coincident with the pre-defined fault location 2. A step input is applied to the actuator. 

The filter estimate is compared with the output firom the sensors to create the system resid- 

uals (see equation (4)). The residuals are projected with residual projectors that annihilate 

all the faults except the one for which they are designed for. The resulting norm of projected 

residuals obtained for filter 1 and filter 3 are shown in figure (5)and figure (6), respectively. 

The response is shoWn in both time and frequency domain. As one can see from figure (5), 

for filter 1 that experience the structural faults, the response of the projector designed for 

the pre-defined fault 2 is approximately 150 dB greater than the other two. This indicates 

that a probable faults has occurred in the pre-defined location 2. A similar scenario is 

unlikely to happen for the remaining filters. As shown in figure (6), all the three norms of 
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Figure 5: Time and frequency domain of the norm of the projected residuals of filter 1. 

the projected residuals of filter 3, have comparable magnitude indicating that none of them 

has experienced a the fault for which it was designed. 

The procedure of detecting and localizing the fault is here described for a structural fault 

that coincides with one of the pre-defined fault location. However, it can be shown that 

similar procedure can be applied to identify structural faults at generic locations with same 

filters but utilizing different projectors mapping the entire structure (see reference [19]) . 

Based on the analytical simulation described, the in-situ health monitoring system should 

be automated by using post-processing residuals that would provide the probability that 

a faults has occurred in one of the five filters and also determine the fault exact location. 

An important aspect that should be considered is the type of input that should be utilized 

in real systems. In fact, the step input utilized in our simulation is difiicult to reproduce 

with piezoelectric transducers. More realistic inputs are periodic excitations such as single 

sinusoidal waves and their firequencies should be chosen based on the dynamic response 

of the structure. The best response of the structure is in the vicinity of its natural fire- 

quencies and therefore, those would be perfect candidates and guarantee a good sensitivity 

to damage. For the simply supported beam described in this paper, the sinusoidal waves 

investigated as input for the piezoelectric actuator coincided with the first few structural 

natural frequencies and the filter design was optimized according to them. 
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Figure 6: Time and frequency domain of the norm of the projected residuals of filter 3. 

In order to have satisfactory sensitivity to damage, in addition to using an optimal 

input, the filter gains were also investigated. An important aspect that was considered 

was the rejection of disturbances and noise. According to the scheme of figure (7), the 

transmission noise, n, to residuals, r, can be written as 

- = H{J-C[s/-(A-LC)]-^L} (43) 
r 

and it can be seen that it can be reduced by reducing the filter gains, L.   A typical trans- 

Inputu 

Proiectof 

Figure 7: Scheme of the transmission noise, n, to residual, r. 

mission obtained in our optimal design is shown in figure (8) and is relative to filter N° 5. 

As it can be seen from the figure, considering that the inputs used for this structure are in 

the low frequency range, the noise transmission amplitude is kept low up to approximately 

100 Hz, where are the first 3 natural frequency. Notice, however, that in the high frequency 

range, the noise transmission amplitude is considerably high in the order of 100 dB and 

therefore, the system inputs and outputs required band-pass filters to avoid this high fre- 
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Figure 8: Transmission noise to residual for filter N° 5 

Filter N" Fault iV" 

Filter 1 3, 8, 11 

Filter 2 13, 15, 9 

Filter 3 2, 5, 10 

Filter 4 1, 6, 14 

Filter 5 4, 7, 12 

Table 1: Optimally clustered pre-defined fault direction vectors 

quency region. Different designs can be achieved choosing accurately the filter eigenvalues 

accordingly with the input used. 

Another important aspect investigated is the clustering of the pre-definite damage po- 

sitions into the 5 filters. In fact, the ability of each filter to distinguish among the fault 

direction vectors is related to the directions of such vectors. Therefore, by clustering the 

three pre-defined fault locations utihzed for each filter such that their directions are op- 

timally different, the sensitivity to damage can be increased. The optimal configuration 

obtained for the current setup is represented in table (1). 
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Figure 9: Experimental test setup. 

5    Results and Discussions 

The experimental setup of the aluminum simply supported beam is shown in figure (9) 

and the material properties and dimensions used in the analytical model are listed in table 

(2). The piezoelectric sensors are positioned on top of beam surface along the longitudinal 

Thickness 

Width 

Length 

Young' modulus 

Density 

Piezoelectric stress/charge coefficient 

Clamped piezoelectric permittivity 

Beam 

tB 3.2 mm 

bB = 27.5 m,m 

L = 0.771 m 

EB = 68.9 GPa 

PB = 2730 kg/m^ 

Sensor and Actuator 

ts = 0.125 mm, tA = 0.6 mm 

bs = bA= 2.5 mm 

Ls = LA — 4, mm 

Es = 40.0 GPa, EA = 80.0 GPa 

PS = rhoA = 7750 kg/m^ 

d3i= -274 • 10-^2 c-zjv 

c^^ = 2.46310-8 C/Nm'^ 

Table 2: Dimension and material properties 

midhne at 180 mm, 333 mm, 486 mm and 639 mm, respectively, from the left-hand edge 

of the beam and the piezoelectric actuator is positioned on the bottom surface, along the 

beam midline, at 397 mm from the left-hand edge of the beam. The position of sensors 

and actuator was decided based on simulation so that both observability and controllability 

of resulting state-space system was guaranteed.  The measured frequency response of the 
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Figure 10: Input-output frequency response from actuator and sensor 1 of the simply sup- 

ported beam, a) Analytical vs. b) measured data. 

structure from sensor 1 is shown in In figure (10) and is compared with the analytical trans- 

fer function obtained from the model. The range of frequency shown in the figure includes 

the first 14 natural frequencies. The transfer function is obtained with a Stanford Research 

System Spectrum Analyzer, Model SR785 with 2048 points. As it can be seen from figure 

(10), the model provides a very good agreement with the measured data with errors in the 

pealc frequencies approximately of the order of 2%. 

For the implementation of the fault detection filter, the following equipments where 

utilized: 1) A Wavetek lOMHz DDs Mod. 29 function generator to produce the sinusoidal 

inputs for the actuator, 2) a low impedance Burleigh PZ 150M volt amplifier for the amph- 

fication of the actuator input, and 3) a National Instruments PCI-MI0-16E-1 PC card for 

data acquisition. The data from the sensors and actuator were sampled at 40 Ksample/sec 

and each acquisition lasted asted 10 seconds. In order to reduce the noise eflPect, digital 

Chebychev low pass and band-pass filter where appropriately designed for each of the input 

and output signals. The state integration was obtained with a Rimge-Kutta fotirth or- 

der method using Matlab software. The actuator input was approximately 120 Volts after 

amplification and the average output from the sensors was approximately 2 Volts^.  The 

^The average measured capacitance of each sensor is C = 3nF resulting in high impedance and thereby 

high voltage output even with smeill currents generally experienced with piezoelectric transducers. 
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norms of the projected residuals obtained from the undamaged structure had magnitude of 

approximately 10~^, indicating good tracking of the filter. V 

The damage inflicted upon the structure was a saw cut of approximately 5mm x 1 mm 

made on one side of the beam at approximately 448 mm from the beam left-hand edge. The 

saw cut position was chosen coincident with the pre-defined fault location N° 9. A new set 

of data was taken from the damaged structure and compared with the estimate of the fault 

detection filter. The resulting norms of the projected residuals are shown in figure (11) for 

filter N° 1 and filter N° 4, respectively. Recall that, for this scenario, filter N° 1 is the 

filter that supposedly should detect the damage. In the figure, for each filter, in case A) are 

shown the normalized norms of residuals before damage occurs and in case B) are shown 

the normalized norms of residuals after damage has occurred. The residuals are normalized 

with respect to values obtained before damage had occurred. As it can be seen from figure 

(11), in both filters, when there was no damage, all the three residuals have similar values. 

After damage occurred, in filter N° 1, the norm of the pre-defined fault direction, location 

9, increased approximately 3 times while the other two norms, location 13 and 15, were 

essentially unchanged. This indicated that the projector 9 detected a damage coincident 

with the fault location 9. For filter N° 4, instead, all the residual norms increased indicating 

that no specific fault was detected. Although not shown, the residual norms of filter N" 

2, 3 and 5, after damage had occurred, showed a behavior similar to the one of filter N° 4 

indicating that no specific fault was detected. 

Based on the previous results, one can conclude that the structure experienced damage 

and that the damage was probably coincident with the pre-defined fault locatioii 9. How- 

ever, for an in-situ health monitoring system, the procedmre should be automated perhaps 

implementing post-processing residuals so that a decision can be made about the structure 

health [20]. Nominally, the residual is zero in the absence of a fault and nonzero otherwise. 

However, as previously stated, when driven by uncertainties and disturbances, the residual 

fails to go to zero even in the absence of faults. To enhance detection and identification, the 

residual processor analyzes the residual generated by the fault detection filter which can be 

viewed as a static geometric pattern containing information about the presence or absence 
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of a fault. By considering the residual processor design as a static geometric pattern recog- 

nition problem, the residual processor could be a neural network or a multiple hypothesis 

Shiryayev sequential probability test which detects and identifies a fault in minimum time 

with a given probability of false and miss alarm [20]. The fault identification problem is 

now solved by assuming that each fault corresponds to certain hypothesis. The residual is 

considered to be the measurement sequence for the multiple hypothesis Shiryayev sequential 

probabihty test which is assumed to be a given distribution (not necessarily Gaussian) and 

conditionally independent. The conditional probability of each fault hypothesis is generated 

to be used to announce the occurrence of the fault with a threshold based on a given proba- 

bility of false and missed alarms. Therefore, the essential featiure of the residual processor is 

to analyze the residue and identify a fault, if it has occurred, with an associated probability. 

This allows for higher level decision making which now can be based on the probability. 

In the development of a health monitoring system, the fault detection filter and residual 

processor should be designed together. 

References 

[1] Doebling S.W., Farrar C.R., and Prime M.B., "Damage identification and health 

monitoring of structural and mechanical systems from changes in their vi- 

bration characteristics : a literature review , Los Alamos, N.M. : Los Alamos 

National Laboratory, 1996. 

[2] Parloo E., Verboven P., Guillaume P., Van Overmeire M., "Autonomous structural 

health monitoring, II. Vibration-based in-operation damage assessment," Me- 

chanical Systems & Signal Processing, vol.16, no.4, July 2002, pp.659-75. 

[3] Beard R.V., "Failure Accomodation in Linear System through Self- 

Reorganization," Ph.D. thesis, Massachussets Institute of Technology, 1971. 

[4] Jones H.L., "Fsdlure Detection in Linear Systems," Ph.D. thesis, Massachussets 

Institute of Technology, 1973. 

27 



[5] Massoumnia M-A., "A geometric approach to the synthesis of failur 

filters," IEEE Transactions on Automatic Contol, vol. AC-31, no. 9, pp.8 

1986. 

[6] White J.E., and Speyer J.L., "Detection filter design: Spectral the 

gorithms," IEEE Transactions on Automatic Control, vol. AC-32, no. "3 

p.593-603. 

[7] Douglas R.K., and Speyer J.L., "Robust Fault Detection Filter Dej 

Journal of Guidance, control and Dynamics, vol. 19, No. 1, pp. 214-218, Ji 

[8] Douglas R.K., and Speyer J.L., "ifoo Bounded Fault Detection Filter," 

nal of Guidance, control and Dynamics, vol. 22, No. 1, pp. 129-138, Jan-I 

[9] Chen R.H., Ng H.K., Speyer J.L., Mingori D.L., "Fault detection, identi: 

reconstruction for ground vehicles," ITSC 2001. 2001 IEEE Intelligert 

tion Systems, Proceedings (Cat. No.01TH8585). IEEE. 2001, pp.924-9. Pis 

USA. 

[10] Rajamani C, Chen A., Howell J.K., Hedrick and M. Tomizuka, " A Con: 

Diagnostic System for Automated Vehicles ," R. IEEE Transactior 

Systems Technology, Vol. 9, No. 4, pp. 553-64, July 2001. 

[11] Laurence H.M. and Speyer J.L., "Fault-Tolerant GPS/INS Navigat 

with Application to Unmanned Aerial Vehicle," Journal of the Inst: 

gation, vol. 49, No. 1, Spring 2002. 

[12] Mehra, R.K. and Peshon, I., "An innovations approach to fault de 

diagnosis in dynamic systems," Automatica, Vol.7, pp.637-640, 1971. 

[13] Waller, H. and Schmidt, R., "The application of state observers ii 

dynamics," Mechanical Systems and Signal Processing, Vol.4, No.3, pp.lJ 

28 



[14] Fritzen, C.P. and Mengelkamp, G., "A Kalman filter approach to the detection 

of structuFEil damage," Proceeding of the 4"* International Workshop on Structural 

Health Monitoring, Stanford, CA pp. 1275-1284, 2003. 

[15] Chung, W. H. and Speyer, J. L., "A Game Theoretic Fault Detection Filter," 

IEEE Transactions on Automatic Control, Vol.AC-43, No.2, pp.143-161, 1998. 

[16] Geradin M., and Rixen D., "Mechanical Vibrations - Theory euid application 

to structural dynamics," 2nd ed., John Wiley k Sons, New York (1997). 

[17] Parton V.Z., and Kudryavtsev B.A., "Electromagnetoelasticity," Gordon and 

Breach Science Publisher, New York (1988). 

[18] Gatti P.L., and Ferrari V., "Applied Structural and Mechanical Vibrations: 

Theory, Methods and Measuring Instrumentation," 1999, E & FN Spon, Taylor 

and FVancis Group, London. 

[19] Liberatore, S., "Aucdytical redundancy, fault detection and health monitoring 

for structures," Ph.D Thesis, University of California, Los Angeles, CA, Dec. 2002. 

[20] Durga P. Malladi and Jason L. Speyer, "A generalized shiryayev sequential prob- 

ability ratio test for change detection and isolation," IEEE Transactions on 

Automatic Control, vol. AC-44, no. 8, pp.1522-1534, Aug. 1999. 

29 



 1 1 1 ! 1                 1                 1 

^        \                 \                 \                 \                 \                 ^                 \ 
t    1 

  
■   fault 13 

— fault IS 
— fautt9 

S^ ̂ mmMMd m ̂  
4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5 

Normalized residuals after damage occurred 

2 ■ S 
11.5 
E 

1 

0.5 

"'Al/i-AiiAWi^-iA-i\ 
L 

•• fault 13 
— fault 15 
— faultg 

n .... 1M fi i -i m 
j..; f fiji 

:iW ll^.L iv |L^.: a*': Wi'M' iK (irtt iw' jifc'^i 
jrPi ^■■r yfS m l^;rirf-i\ mm |i;;r\ P\ r^ ji^'^'^^ 

4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5 
time (sec) 

(a) Filter N"! 

-I 1 1 1 1 1 r- 

<a): 
< fault 1 
' feult6 

fault 14 

4 4.05 4.1 4.15 4.2 4.25 4.3 4.35 4.4 4.45 4.5 

(b) Filter ;V°4 

Figure 11: Measured data. Filter AT" 1 and Filter N° 4. Normalized norms of the projected 

residuals: A) Before damage and B) after damage 
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